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Abstract

Trajectory tracking control of parallel manipulators is aimed in the presence of flexibility at the joint drives. Joint

structural damping is also considered in the dynamic model. The system is first converted into an open-tree structure by

disconnecting a sufficient number of unactuated joints. The closed loops are then expressed by constraint equations. It is

shown that, in a parallel robot with flexible joint drives, the acceleration level inverse dynamics equations are singular

because the control torques do not have an instantaneous effect on the end-effector accelerations due to the elastic media.

Eliminating the Lagrange multipliers and the intermediate variables, a fourth-order input–output relation is obtained

between the actuator torques and the end-effector position variables. The proposed control law decouples and linearizes

the system and achieves asymptotic stability by feedback of positions and velocities of the actuated joints and rotors. As a

case study, a three degree of freedom, two legged planar parallel manipulator is simulated to illustrate the performance of

the method. The end-effector desired trajectory is chosen such that the kinematic and drive singular positions are avoided.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Parallel manipulators have been an intensive area of research for over a decade. Due to their closed-loop
structure they can carry heavier loads with greater accuracy compared to serial manipulators. These
mechanisms are most commonly used in industrial applications such as flight simulators and earthquake
simulators, micro-motion manipulations where high load capability and high motion accuracy are needed.
However these manipulators face the problem of having a relatively small functional workspace and
difficulties in design and control. For this reason parallel manipulators have become a focus of interest in
various fields of research. On the other hand, joint flexibility is important in manipulator dynamics and
control system design since their drives exhibit this behavior. Rivin [1] showed experimentally that joint
flexibility is the main source contributing to overall robot flexibility, and Good et al. [2] showed empirically
that ignoring joint flexibility in controller design of contemporary industrial robots results in performance
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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degradation. Hence in order to handle high precision manipulations, joint flexibility should be taken into
consideration in the controller design.

Many researchers studied the control of flexible joint serial manipulators. Spong [3] considered two
nonlinear control schemes, namely inverse dynamics and singular perturbation. In the inverse dynamics
approach the intermediate variables are analytically eliminated and the input torques are found to be
functions of the end-effector motion [3–6]. The singular perturbation approach uses the advantage of order
reduction by decomposing the system into two subsystems, namely a fast subsystem (flexible joints) and a slow
subsystem (rigid manipulator) [3,7]. Forrest-Barlach and Babcock [4] used the inverse dynamics control
method for the cylindrical coordinate arm with drive train compliance and actuator dynamics in the radial and
each of the revolute degrees of freedom. Jankowski and Van Brussel [5] applied inverse dynamics control in
discrete time where solution of the singular set of differential equations is used to avoid the further
differentiations of the system equations of motion. Ider and Özgören [6] utilized inverse dynamics control at
the acceleration level by using implicit numerical integration methods that account for the higher order
derivative information for solving the singular set of differential equations. They achieved asymptotic stability
by the feedback of joint positions, velocities and rotor velocities. Other studies involving control of serial
manipulators with flexible joints include simultaneous motion and force control of constrained robots [8–10]
and adaptive controllers [11–13]. Recent survey papers by Ozgoli and Taghirad [14], and Dwivedy and
Eberhard [15] provide detailed literature reviews of modelling and control of flexible joint robots.

To the best of our knowledge the previous studies in the literature related to the control of parallel
manipulators did not take joint flexibility into account. However consideration of joint flexibility in the
controller design is especially important for parallel manipulators due to the high precision required in their
applications. The aim of the present study is to develop an inverse dynamics motion control algorithm for
parallel manipulators in the presence of flexibility at the joint drives. The system is first converted into an
open-tree structure by disconnecting a sufficient number of unactuated joints. The closed loops are then
expressed by constraint equations. It is shown that the acceleration level inverse dynamics equations form a
singular set of differential equations because of the elastic media between the actuators and the end-effector.
When the Lagrange multipliers and the intermediate variables are eliminated, a fourth-order input–output
relation is obtained between the actuator torques and the end-effector position variables. The measured
quantities are the positions and velocities of the actuated joints and rotors. Measurements of accelerations and
jerks are not necessary. Damping which is inherent in the structural members used in drive trains is also
considered in the dynamic model.

This paper is divided into six sections: The second section outlines the derivation of the dynamic equations
of flexible joint parallel manipulators. In the third section, the inverse dynamics control method is introduced.
Section 4 presents simulations of a three degree of freedom 2-RRR planar manipulator to illustrate the
performance of the control algorithm. Discussions are given in Section 5. Conclusions form the last section.

2. Manipulator dynamics

Consider an n degree of freedom parallel manipulator. Let this system be converted into an open-tree
structure by disconnecting a sufficient number of unactuated joints and the degree of freedom of the open-tree
system be m, i.e., the number of independent loop closure constraints in the parallel manipulator be m�n. Let
h ¼ ½y1; . . . ; ym�

T denote the joint variables of the open system.
In the parallel manipulator as many joints as the degree of freedom of the manipulator are actuated. Let the

joint variables be ordered such that the joint variable vector can be separated into two subvectors as
hT ¼ ½ qT huT �, where q is n� 1 vector of the variables of the actuated joints and hu is (m�n)� 1 vector of the
variables of the unactuated joints.

Due to the elasticity of the transmission elements, joint elasticity occurs at the actuated joints. The sources
of elasticity are generally couplings, harmonic drives, and thin shafts used in drive trains. Joint elasticity of the
power transmission elements at an actuated revolute joint is modelled as a torsional spring. Also structural
damping of the transmission elements is modelled as a viscous torsional damper. For the ith transmission, ki

stands for the spring constant and di is used for the damping constant as seen in Fig. 1. The ith actuated joint
variable qi represents the angular position of the driven link of the manipulator with respect to the link on
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Fig. 1. Flexible joint drive.
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which the ith actuator is mounted. The rotor angle of the ith actuator divided by the gear ratio ri is denoted as
the actuator variable fi. Then the vector of the actuator variables of the manipulator is u ¼ ½f1; . . . ;fn�

T. The
motor torques at the exit of the speed reductions are denoted by Ti, i ¼ 1; . . . ; n. Elasticity at each of the
actuated joints creates an additional degree of freedom in the system, with the rotors of the actuators being
additional links. Hence the system has 2n degrees of freedom, while only n control actuator torques are
available.

The open system is subject to the m�n loop closure equations giðy1; . . . ; ymÞ ¼ 0 which are obtained by
reconnecting the disconnected joints. The number of the loop closure equations written for a disconnected
joint is equal to the number of degrees of freedom restricted by that joint. The loop closure equations can be
written at velocity level as

B_h ¼ 0 (1)

where B(h) is the (m�n)�m constraint Jacobian matrix with Bij ¼ qgi=qyj, i ¼ 1; . . . ;m� n; j ¼ 1; . . . ;m.
It is assumed that the gear ratio ri is large enough so that the kinetic energy of the rotor is due mainly to its

own rotation [3]. In other words, the contribution of the angular velocities of the links to the rotational motion
of the rotor is neglected. To see this, let ox, oy, oz be the angular velocity components of the link on which the
actuator is mounted where the rotor angle is measured about the z-axis. The rotational kinetic energy of the
ith actuator is written as 1/2 ½Ir

i ðoz þ ri
_fiÞ

2
þ I rn

i ðo
2
x þ o2

yÞ� where Ii
r is the moment of inertia of the ith rotor

about its rotation axis and Ii
r� is the moment of inertia of the cylindrical rotor about the axes perpendicular to

the rotation axis through the mass center. Since ox, oy, oz and _fi are in the same order of magnitude, the
rotational kinetic energy of the rotor is approximately 1

2
I r

i r
2
i
_f
2

i if ri is sufficiently large. By this assumption the
inertia coupling terms between the joint and actuator variables disappear yielding the following equations of
motion for the open-tree system of the parallel manipulator:

M€hþQþDþ K� BTk ¼ 0 (2)

Ir €u�Dð_q� _uÞ � Kðq� uÞ ¼ T (3)

where M(h) is the m�m symmetric positive definite generalized mass matrix and Qðh; _hÞ is the m� 1 vector
which contains Coriolis, centrifugal and gravitational terms. M and Q are the same as those of the open system,
which does not have joint elasticity where the rotor masses are included as part of the corresponding links.
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K is an m� 1 vector which contains stiffness terms such that

K ¼
Kðq� uÞ

0

� �

where K is n� n diagonal stiffness matrix with Kii ¼ ki, i ¼ 1; . . . ; n. Similarly D is an m� 1 vector which
contains damping terms such that

D ¼
Dð_q� _uÞ

0

� �

where D is n� n diagonal damping matrix with Dii ¼ di. I
r is n� n diagonal matrix of the rotor inertias where

Iii
r
¼ Ii

rri
2, i ¼ 1; . . . ; n. T is the n� 1 vector of the motor torques at the exit of the speed reducers, BTk is the

generalized constraint force vector and k is the (m�n)� 1 vector of Lagrange multipliers which represent the
joint forces at the disconnected joints.
3. Inverse dynamics control

The control method to be used for the parallel manipulator is based on the relation between the inputs and
the outputs. The inputs for the robot manipulator are the joint torques/forces (or voltages supplied to the
actuators). Since end-effector position tracking is aimed in the control problem, the outputs are the end-
effector position variables.

Let xi, i ¼ 1; . . . ; n represent the Cartesian end-effector position variables. Then the functions that are used
to relate each coordinate of the end-effector to the joint coordinates, i.e. so called task equations are written as
xi ¼ fi(y1, y, ym), i ¼ 1; . . . ; n, and are expressed at velocity level as

_x ¼ C_h (4)

where Gij ¼ qf i=qyj, i ¼ 1; . . . ; n, j ¼ 1; . . . ;m. Combining Eqs. (1) and (4), one can solve for _h from the
assigned _x as

_h ¼ Z�1h (5)

where the m�m matrix Z is ZT ¼ ½BT CT� and hT ¼ ½0 _xT�.
At this point it is convenient to reduce the number of the dynamic equations by eliminating the unactuated

joint accelerations €h
u
and the Lagrange multipliers k in Eq (2) by making use of the constraint equations at

acceleration level. To this end the constraint matrix is partitioned as B ¼ ½Ba Bu
� where the (m�n)� n

matrix Ba and the (m�n)� (m�n) matrix Bu correspond to _q and _h
u
, respectively. Then _h

u
can be written in

terms of _q as below,

Bu _h
u
¼ �Ba _q (6)

Using the derivative of Eq. (6) with respect to time, one can solve for _h
u
as

€h
u
¼ �Bu�1 ½Ba €qþ _B

a
_qþ _B

u _h
u
� (7)

When M and Q are partitioned according to q and hu as

M ¼
Maa Mau

MauT Muu

� �
and Q ¼

Qa

Qu

" #

Eq. (2) can be written as

Maa €qþMau €h
u
þQa þDð_q� _uÞ þ Kðq� uÞ � BaTk ¼ 0 (8)

and

MauT €qþMuu €h
u
þQu � BuTk ¼ 0 (9)
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Substituting Eq. (7) into Eqs. (8) and (9), and then eliminating k in the resulting equations, one obtains the
following n dimensional equation:

Mn €qþQn þDð_q� _uÞ þ Kðq� uÞ ¼ 0 (10)

where

Mn ¼ ½Maa �MauBu�1Ba� � BaT ðBu�1 Þ
T
½MauT �MuuBu�1Ba� (11)

and

Qn ¼ ½�MauBu�1 _B
a
þ BaTðBu�1Þ

TMuuBu�1 _B
a
�_qþ ½�MauBu�1 _B

u

þ BaT ðBu�1 Þ
TMuuBu�1 _B

u
�_h

u
þQa � BaT ðBu�1 Þ

TQu (12)

C in the task equation (4) can be partitioned similarly to B as C ¼ Ca Cu
� �

, where the n� n matrix Ca and
the n� (m�n) matrix Cu correspond to _q and _h

u
, respectively. Using Eqs. (6) and (7), €h

u
can be eliminated in

the acceleration level task equations and the task equations can be written at acceleration level as

J€q ¼ � _J_qþ €x (13)

where J ¼ Ca � CuBu�1Ba.
Eqs. (10), (3) and (13) constitute the inverse dynamic equations of the parallel manipulator from which the

torques T can be obtained from the output vector x(t). These equations can be written in augmented form as

Mn 0 0

0 Ir �I

J 0 0

2
64

3
75

€q

€u

T

2
64

3
75 ¼

�Qn �Dð_q� _uÞ � Kðq� uÞ

Dð_q� _uÞ þ Kðq� uÞ

� _J_qþ €x

2
64

3
75 (14)

In fact, in the inverse dynamics problem the first and third rows of Eq. (14) involve the solution of the
kinematic variables and can be termed as inverse kinematic equations of parallel manipulators with flexible
joints. On the other hand, the second row of Eq. (14) is used for finding the control torques. Because of
redundancy due to the joint flexibility, inertia and elastic force terms are also involved in the inverse kinematic
equations, which can be expressed as

Mn 0

J 0

" #
€q

€u

" #
¼
�Qn �Dð_q� _uÞ � Kðq� uÞ

� _J_qþ €x

" #
(15)

However, Eq. (15) cannot be solved in this form since it is a singular set of differential equations. Hence, the
acceleration level inverse dynamic equations (14) also represent a singular set of differential equations. The
physical reason for the singularity is that because the control torques are transmitted to the end-effector
through the elastic joints, then the control torques do not have an instantaneous effect on the end-effector
acceleration.

When the intermediate variables u and q are eliminated by manipulating the rows of Eq. (14), the relation
between the input T and the output x is obtained as

N

_ _ _ _

x þ P ¼ Tþ S _T (16)

where

N ¼ K�1IrMnJ�1 (17)

S ¼ K�1D (18)

and

P ¼ K�1Ir½ð�3MnJ�1 _Jþ 2 _M
n
þDÞ

_ _ _

qþ ð�3MnJ�1 €Jþ €M
n
þ KÞ€q

þ ð�MnJ�1

_ _ _

JÞ_qþ €Q
n
� þ K�1D½Mn _ _ _

qþ _M
n
€qþ _Q

n
� þMn €qþQn (19)
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Eq. (16) shows that the control torques have an instantaneous effect on the end-effector snaps (second
derivatives of the end-effector accelerations). An inverse dynamics control law can be formulated by choosing
control torques which will linearize and decouple the system. To this end Tþ S _T is chosen as

Tþ S _T ¼ Nuþ P (20)

where u is n� 1 control input vector that represents the command snaps

u ¼

_ _ _ _

xd þ C1ð

_ _ _

xd �

_ _ _

xÞ þ C2ð €x
d
� €xÞ þ C3ð _x

d � _xÞ þ C4ðx
d � xÞ (21)

the superscript d is used for the desired values and Ci, i ¼ 1; . . . ; 4 are diagonal feedback gain matrices. Once
Tþ S _T is obtained from Eq. (16), T can be found by numerical integration. Note that if joint damping is
neglected, S in Eqs. (16) and (20) vanishes. In the absence of any modelling error, the actual snaps produced
by these control torques, are equal to the command snaps, i.e. _ _ _ _

x ¼ u. Using Eq. (21), this leads to the
following linear and decoupled error dynamics

_ _ _ _

e þ C1
_ _ _

eþ C2 €eþ C3_eþ C4e ¼ 0 (22)

where e ¼ xd � x. Asymptotic stability is achieved by appropriate choice of the feedback gains Cijj,
i ¼ 1; . . . ; 4; j ¼ 1; . . . ; n.

The necessary measurements for the calculation of the control torques are the positions and velocities of the
actuated joints and the actuator rotors, i.e. q, _q, u and _u. The remaining variables that appear in the
control law are calculated using these quantities. The joint acceleration vector €q is calculated using Eq. (10)
and the joint jerk vector

_ _ _

q is found using the derivative of Eq. (10) in which €u is inserted by making use of
Eq. (3), i.e.

_ _ _

q ¼ �Mn�1f _M
n
€qþ _Q

n
þD€q�DIr�1 ½Dð_q� _uÞ � Kðq� uÞ � T� þ Kð_q� _uÞg (23)

The unactuated joint variable states hu, _h
u
, €h

u
and

_ _ _

h
u
are obtained using the loop closure equations and their

derivatives and the end-effector states x, _x, €x and _ _ _

x are found from the task equations and their derivatives.
Parallel manipulators with rigid joints possess kinematic and drive singular positions. In addition to the

numerical problems that occur at such positions, passing through such positions is in general not possible
unless certain consistency conditions are satisfied [16]. At a kinematic singular position the assigned end-
effector motion cannot in general be reached by the manipulator (the manipulator loses one or more degrees
of freedom) and at a drive singular position the actuators lose control of the manipulator in certain directions
(the actuators lose control of one or more degrees of freedom). Kinematic singularities occur when Z is
singular and drive singularities occur when Bu is singular [16,17]. As seen in Eqs. (5) and (7) the same
singularity conditions occur in the presence of joint flexibility. In this paper, it is assumed that the end-effector
trajectory is chosen such that the manipulator never comes to a kinematic or drive singular position, i.e. Z and
Bu are always nonsingular.
4. Case study

A planar parallel manipulator shown in Fig. 2 is considered as a case study in order to check the
performance of the control law. Parallel manipulators are generally classified according to the number of legs
and the types of joints that their legs have beginning from the fixed base to the moving platform. The parallel
manipulator to be analyzed has two legs and each of them has three revolute joints from the fixed base to the
moving platform.

The manipulator has three degrees of freedom, i.e. n ¼ 3, excluding the additional degrees of freedom that
arise due to the flexible joints. Let the manipulator be actuated by three actuators located at joints A, B and C

whose joint variables are y1, y2 and y3.
For this particular numerical example, considering disconnection of the revolute joint at F, m ¼ 5 and the

vector of the joint variables of the open system is

h ¼ y1 y2 y3 y4 y5
� �T

(24)
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Fig. 2. 2-RRR parallel manipulator.
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which is subdivided into the vectors of the actuated and the unactuated joint variables as

q ¼ y1 y2 y3
� �T

(25)

hu
¼ y4 y5
� �T

(26)

The vector of the actuator variables becomes

u ¼ f1 f2 f3

h iT
(27)

The fixed dimensions of the manipulator are labeled as L1 ¼ AC, L2 ¼ BD, L3 ¼ CE, L4 ¼ DF, L5 ¼ EF,
do ¼ AB, a ¼ ffPEF , b ¼ ffGEF , g5 ¼ GE and d5 ¼ EP. Links 1–4 are uniform bars. The numerical data are
L1 ¼ L2 ¼ L3 ¼ L4 ¼ 1.0m, L5 ¼ 1.5m, do ¼ 1.8m, g5 ¼ 0.75m, d5 ¼ 0.8m, a ¼ 201 and b ¼ 71. The masses
of the links are m1

L
¼ m2

L
¼ m3

L
¼ m4

L
¼ 10 kg and m5

L
¼ 15 kg. The motors and speed reducers at the active

joints have small dimensions compared to the links. The combined mass of the motor and the speed reducer
mounted on link-1 is m3

A
¼ 1.2 kg. The rotor moments of inertia about respective axes are I1

r
¼ 7.0e–05 kgm2,

I2
r
¼ 8.0e–05 kgm2, I3

r
¼ 9.0e–05 kgm2. The gear ratios are r1 ¼ r2 ¼ r3 ¼ 100. Spring constants at the

actuated joints are k1 ¼ k2 ¼ k3 ¼ 5000Nm/rad. Structural damping constants of the actuated joints
correspond to a 3% damping ratio for the structural vibration of each rotor, i.e. d1 ¼ 0.0355Nms/rad,
d2 ¼ 0.0379Nms/rad, d3 ¼ 0.0402Nm s/rad.

The task variables are the coordinates of point P on the moving platform and the orientation of the moving
platform, i.e. x ¼ ½ xP yP s �T. The moving platform is assumed to make the following deployment motion:

xd
p ¼

0:70þ
0:5

T
½t�

T

2p
sin

2pt

T
�m 0ptpT

1:20m t4T

8<
: (28a)

yd
p ¼

1:90�
0:5

T
½t�

T

2p
sin

2pt

T
�m 0ptpT

1:40m t4T

8<
: (28b)



ARTICLE IN PRESS
S.K. Ider, O. Korkmaz / Journal of Sound and Vibration 319 (2009) 77–9084
sd ¼
15þ

20

T
½t�

T

2p
sin

2pt

T
� deg 0ptpT

35 deg t4T

8<
: (28c)

where T is the period of the deployment motion and selected as T ¼ 0.6 s. M and Q of the dynamic equations,
the loop closure equations and the task equations are given in the appendix.

The kinematic singular positions are obtained from |Z| ¼ 0 as the positions where y3 ¼7kp or y4 ¼7kp
ðk ¼ 0; 1; 2; . . .Þ, i.e. when links 1 and 3 or links 2 and 4 are in folded or extended positions. On the other hand
the drive singular positions are obtained from |Bu| ¼ 0 as the positions where (y1+y3+y5�y2�y4) ¼7kp
ðk ¼ 0; 1; 2; . . . ; Þ, i.e. when points E, F and D become collinear [18]. The specified end-effector trajectory does
not involve any of these singular configurations.
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The parallel manipulator is assumed to be at rest initially and have the following initial active joint positions
as y1o ¼ 1351, y2o ¼ 751, y3o ¼ �901. The corresponding initial passive joint angles are y4o ¼ 51.911,
y5o ¼ �31.461, and the task space initial positions are x1o ¼ 0.6668m, x2o ¼ 1.8563m, x3o ¼ 13.551. Hence the
initial position is chosen to have an initial position error. In addition, the cycloidal motion profile is
continuous up to the acceleration level but has discontinuous jerks at the boundaries.

The feedback gain diagonal matrices Ci, i ¼ 1; . . . ; 4 are chosen to satisfy ITAE performance criteria, i.e.
C1jj ¼ 2.1ooj, C2jj ¼ 3.4ooj

2, C3jj ¼ 2.7ooj
3, C4jj ¼ ooj

4, j ¼ 1, 2, 3 where ooj are positive constants. With these
gains the two natural frequencies of the closed-loop error dynamics in each direction are 0.75ooj and 1.33ooj.

The control torques as obtained from Eq. (20) are applied to the system represented by Eqs. (10) and (3) for
the forward dynamics solution. The values obtained for €q and €u using these equations are numerically
integrated to obtain q, _q, u and _u which are taken as the measured quantities. Then the actuated
joint acceleration and jerk vectors €q and

_ _ _

q are calculated using Eqs. (10) and (23) in which the parameters
contain modelling error, if any. Matlabs and one of its integrated tools Simulinks are used for the
simulation. The implementation of the control system is shown in Fig. 3. In the simulations ooj ¼ 50 rad/s,
j ¼ 1, 2, 3 and the sampling time interval h ¼ 0.002 s.
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Fig. 7. Deflections: (1) y1�f1, (2) y2�f2 and (3) y3�f3.
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Fig. 10. Control torques (modelling error): (1) T1, (2) T2 and (3) T3.
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Fig. 11. Deflections (modelling error): (1) y1�f1, (2) y2�f2 and (3) y3�f3.

S.K. Ider, O. Korkmaz / Journal of Sound and Vibration 319 (2009) 77–90 87
The closed-loop response and the errors are shown in Figs. 4 and 5, respectively. It is seen that good
tracking properties are achieved at all task variables. The control torques are plotted in Fig. 6 and the elastic
deflections in Fig. 7. The initial and final elastic deflections are nonzero due to the gravitational forces.

To see the effects of modelling error the closed-loop system is also simulated using 10% smaller values for
the inertia and elastic properties in the model. The response and the errors are shown in Figs. 8 and 9,
respectively. The steady state errors are observed to be quite small. Figs. 10 and 11 show the control torques
and the elastic deflections respectively in the presence of modelling error.

5. Discussions

The control law developed yielded good tracking properties even in the presence of modelling error. The
errors can further be decreased if higher ooj are used.
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The sampling frequency are chosen to be not less than 10 times the largest natural frequency of the closed-
loop system. When smaller sampling frequencies are used, instability and divergence of the control torques
and response are observed. Hence, the controller bandwidth can be increased by increasing the sampling
frequency. On the other hand the real time computational requirements place an upper limit on the sampling
frequency.

In the paper the motor dynamics are not considered in order to concentrate on the dynamics of the flexible
joint parallel manipulators. Hence it is assumed that the required control torques are applied without any
delay. This assumption is justified if brushless DC motors are used which are popular in robot applications.
The frequency response of the current loop in brushless DC motors is wide enough to minimize any effect on
outer control loops and hence the motor dynamics are not considered [20].

Parallel manipulators possess drive singular positions in addition to the kinematic singular positions that
serial manipulators also have. At kinematic singular positions, the manipulator loses one or more degrees of
freedom and at drive singular positions the actuators lose the control of one or more degrees of freedom. It is
possible to utilize consistency conditions and modified dynamic equations near singular positions [16,19].
However, in the present study the singular positions are avoided in the motion planning stage for the sake of
simplicity.

6. Conclusions

It is shown that in a flexible joint parallel manipulator the actuator forces do not have an instantaneous
effect on the end-effector accelerations due to the elastic media. To find the input–output relation, first the
loop closure constraint equations are utilized to eliminate the unactuated joint variables and the Lagrange
multipliers. Then the resulting dynamic equations are manipulated to eliminate the actuator variables yielding
a fourth-order relation between the actuator torques and the end-effector position variables. Joint structural
damping is also considered in the dynamic model, which brings an additional complexity due to the
appearance of the torque rates in the input output relation. The inverse dynamics control law developed
decouples and linearizes the system, yielding asymptotically stable fourth-order error dynamics by feedback of
positions and velocities of the actuated joints and rotors. Measurements of the joint accelerations and jerks are
not necessary since they are calculated from the dynamic equations.

Appendix

The elements of M and Q shown in Eq. (2) are given below, where mi, i ¼ 1; . . . ; 5 are the masses of the
links, Iizz, i ¼ 1; . . . ; 5 are the centroidal moments of inertia of the links and cyijk ¼ cosðyi þ yj þ ykÞ,
syijk ¼ sinðyi þ yj þ ykÞ.

M11 ¼ mL
1

L2
1

4
þ I1zz

� �
þmL

3 L2
1 þmL

3 L1L3cy3 þ mL
3

L2
3

4
þ I3zz

� �
þmL

5 L2
1 þmL

5 L2
3

þ ½mL
5 g2

5 þ I5zz� þ 2mL
5 L1L3cy3 þ 2mL

5 L1g5cðy35 þ bÞ þ 2mL
5 L3g5cðy5 þ bÞ þmA

3 L2
1 (A.1)

M13 ¼
1

2
mL

3 L1L3cy3 þ mL
3

L2
3

4
þ I3zz

� �
þmL

5 L2
3 þ ½m

L
5 g2

5 þ I5zz� þmL
5 L1L3cy3

þmL
5 L1g5cðy35 þ bÞ þ 2mL

5 L3g5cðy5 þ bÞ (A.2)

M15 ¼ ½m
L
5 g2

5 þ I5zz� þmL
5 L1g5cðy35 þ bÞ þmL

5 L3g5cðy5 þ bÞ (A.3)

M22 ¼ mL
2

L2
2

4
þ I2zz

� �
þmL

4 L2
2 þmL

4 L2L4cy4 þ mL
4

L2
4

4
þ I4zz

� �
(A.4)

M24 ¼
1

2
mL

4 L2L4cy4 þ mL
4

L2
4

4
þ I4zz

� �
(A.5)
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M33 ¼ mL
3

L2
3

4
þ I3zz

� �
þmL

5 L2
3 þ ½m

L
5 g2

5 þ I5zz� þ 2mL
5 L3g5cðy5 þ bÞ (A.6)

M35 ¼ ½m
L
5 g2

5 þ I5zz� þmL
5 L3g5cðy5 þ bÞ (A.7)

M44 ¼ mL
4

L2
4

4
þ I4zz

� �
(A.8)

M55 ¼ ½m
L
5 g2

5 þ I5zz� (A.9)

Q1 ¼ mL
1 g

L1

2
cy1 þmL

3 g L1cy1 þ
L3

2
cy13

� �
þmL

5 g L1cy1 þ L3cy13 þ g5cðy135 þ bÞ
� �

þmA
3 gL1cy1 (A.10)

Q2 ¼ mL
2 g

L2

2
cy2

� �
þmL

4 g L2cy2 þ
L4

2
cy24

� �
(A.11)

Q3 ¼
1

2
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2

1½m
L
3 L1L3sy3 þ 2mL

5 L1L3sy3 þ 2mL
5 L1g5sðy35 þ bÞ�

þ _y1 _y3
1

2
mL

3 L1L3sy3 þmL
5 L1L3sy3 þmL

5 L1g5sðy35 þ bÞ
� �

þ _y1 _y5½mL
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L3

2
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� �
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5 g½L3cy13 þ g5cðy135 þ bÞ� (A.12)
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1

2
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2
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4 L2L4sy4 þmL
2 g
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2
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2
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Q5 ¼
_y
2

1½m
L
5 L1g5sðy35 þ bÞ þmL

5 L3g5sðy5 þ bÞ� þ _y
2

3m
L
5 L3g5sðy5 þ bÞ

þ _y1 _y3½mL
5 L1g5sðy35 þ bÞ þ 2mL

5 L3g5sðy5 þ bÞ� þ _y1 _y5½mL
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Then the submatrices of M and Q are

Maa ¼

M11 0 M13

0 M22 0

M31 0 M33

2
64

3
75; Mau ¼MuaT ¼

0 M15

M24 0

0 M35

2
64

3
75; Muu ¼

M44 0

0 M55

" #
(A.15)

QaT ¼ Q1 Q2 Q3

h i
; QuT ¼ Q4 Q5

h i
(A.16)

The loop closure equations are given below:

g1 ¼ L1cy1 þ L3cy13 þ L5cy135 � L2cy2 � L4cy24 � d0 ¼ 0 (A.17)

g2 ¼ L1sy1 þ L3sy13 þ L5sy135 � L2sy2 � L4sy24 ¼ 0 (A.18)

Then the submatrices of B take the following form:

Ba ¼
�L1sy1 � L3sy13 � L5sy135 L2sy2 þ L4sy24 �L3sy13 � L5sy135
L1cy1 þ L3cy13 þ L5cy135 �L2cy2 � L4cy24 L3cy13 þ L5cy135

" #
(A.19)

Bu ¼
L4sy24 �L5sy135
�L4cy24 L5cy135

" #
(A.20)
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The task equations are as follows:

f 1 ¼ xP ¼ L1cy1 þ L3cy13 þ d5cðy135 þ aÞ (A.21)

f 2 ¼ yP ¼ L1sy1 þ L3sy13 þ d5sðy135 þ aÞ (A.22)

f 3 ¼ s ¼ y135 (A.23)

The submatrices of C are

Ca ¼

�L1sy1 � L3sy13 � d5sðy135 þ aÞ 0 �L3sy13 � d5sðy135 þ aÞ

L1cy1 þ L3cy13 þ d5cðy135 þ aÞ 0 L3cy13 þ d5cðy135 þ aÞ

1 0 1

2
64

3
75 (A.24)

Cu ¼

0 �d5sðy135 þ aÞ

0 d5cðy135 þ aÞ

0 1

2
64

3
75 (A.25)
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